Окислитель и восстановитель

Окислитель и восстановитель

Составление схемы электронного баланса

Пример №1. Получение хлора в лаборатории

В лаборатории хлор получают из перманганата калия и концентрированной соляной кислоты. В колбу Вюрца помещают кристаллы перманганата калия. Закрывают колбу пробкой с капельной воронкой. В воронку наливается соляная кислота. Соляная кислота приливается из капельной воронки. Сразу же начинается энергичное выделение хлора. Через газоотводную трубку хлор постепенно заполняет цилиндр, вытесняя из него воздух. Рис. 1.

Рис. 1

На примере этой реакции рассмотрим, как составлять электронный баланс.

1. Запишем схему этой реакции:

KMnO4 + HCI = KCI + MnCI2 + CI2 + H2O

2. Расставим степени окисления всех элементов в веществах, участвующих в реакции:

K+Mn+7O-24 + H+CI- = K+CI- + Mn+2CI-2 + CI02 + H+2O-2

Степени окисления поменяли марганец и хлор.

3. Составляем схему, отражающую процесс перехода электронов:

Mn+7+5е- = Mn+2 окислитель, процесс восстановление

2 CI- -2е- = CI02 восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 5 и 2. Это 10. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

Mn+7+5е- = Mn+2 2

2 CI- -2е- = CI02 5

5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.

2KMnO4 + ? HCI = ?KCI + 2MnCI2 + 5CI2 +? H2O

Однако перед формулой соляной кислоты не поставлен коэффициент, так как не все хлоридные ионы участвовали в окислительно-восстановительном процессе. Метод электронного баланса позволяет уравнивать только ионы, участвующие в окислительно-восстановительном процессе. Поэтому нужно уравнять количество ионов, не участвующих в окислительно-восстановительной реакции. А именно катионов калия, водорода и хлоридных анионов. В результате получается следующее уравнение:

2KMnO4 + 16 HCI = 2KCI + 2MnCI2 + 5CI2 + 8H2O

Пример №2. Взаимодействие меди с концентрированной азотной кислотой. Рис. 2.

В стакан с 10 мл кислоты поместили «медную» монету. Быстро началось выделение бурого газа (особенно эффектно выглядели бурые пузырьки в еще бесцветной жидкости). Все пространство над жидкостью стало бурым, из стакана валили бурые пары. Раствор окрасился в зеленый цвет. Реакция постоянно ускорялась. Примерно через полминуты раствор стал синим, а через две минуты реакция начала замедляться. Монета полностью не растворилась, но сильно потеряла в толщине (ее можно было изогнуть пальцами). Зеленая окраска раствора в начальной стадии реакции обусловлена продуктами восстановления азотной кислоты.

Рис. 2

1. Запишем схему этой реакции:

Cu + HNO3 = Cu (NO3)2 + NO2 + H2O

2. Расставим степени окисления всех элементов в веществах, участвующих в реакции:

Cu0 + H+N+5O-23 = Cu+2(N+5O-23)2 + N+4O-22 + H+2O-2

Степени окисления поменяли медь и азот.

3. Составляем схему, отражающую процесс перехода электронов:

N+5+е- = N+4 окислитель, процесс восстановление

Cu0 -2е- = Cu+2 восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 1 и 2. Это 2. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

N+5+е- = N+4 2

Cu0 -2е- = Cu+2 1

5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.

Cu + ?HNO3 = Cu (NO3)2 + 2NO2 + 2H2O

Азотная кислота участвует не только в окислительно-восстановительной реакции, поэтому коэффициент сначала не пишется. В результате, окончательно получается следующее уравнение:

Cu + 4HNO3 = Cu (NO3)2 + 2NO2+ 2H2O

Факторы, влияющие на продукты окисления

Факторы, влияющие на конечные продукты реакции

При протекании окислительно-восстановительных реакций, конечные продукты зависят от многих факторов.

· Состав реагирующих веществ

· Температура

· Концентрация

· Кислотность среды

Рассмотрим это в случае реакции с перманганатом калия. Продукты его восстановления зависят от кислотности среды, что можно изобразить схемой:

Например, при взаимодействии перманганата калия с нитритом калия в кислой среде

Красно-фиолетовая окраска раствора переходит в бесцветную окраску.

В нейтральной среде образуется MnO2 и окраска меняется с красно-фиолетовой на коричневую.

В щелочной среде при восстановлении перманганата калия образуется манганат калия K2 MnO4, который окрашен в зеленый цвет.

Окислительно-восстановительные процессы происходят в живых организмах, они широко распространены в природе: деятельность вулканов, грозовые разряды и др. многие технологические процессы основаны на окислении и восстановлении. Это и получение металлов, горение, синтез оксидов серы и азота при производстве кислот, получение аммиака.

Подведение итога урока

В ходе урока была изучена тема «Окислительно-восстановительные реакции». Вы узнали определение данных реакций, их отличия от реакций других типов. Вспомнили, что такое степень окисления, окислитель и восстановитель. Учились составлять схемы электронного баланса для окислительно-восстановительных реакций, познакомились с классификацией окислительно-восстановительных реакций.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – 14-е изд. – М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. – К.: ИЦ «Академия», 2008. – 240 с.: ил.

3. Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. – М.: Дрофа, 2007. – 220 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Internerurok.ru (Источник).

2. Hemi.nsu.ru (Источник).

3. Chemport.ru (Источник).

4. Химик (Источник).

Окислитель это атом, молекула или ион, который

Выберите один из 4 вариантов ответа:

1) октановое число

2) координационное число

3) кислотное число

4) йодное число

Ответы:

1) (1 б.) Верные ответы: 3;

2) (1 б.) Верные ответы: 2;

3) (1 б.) Верные ответы: 2;

4) (1 б.) Верные ответы: 2;

5) (1 б.) Верные ответы: 2;

6) (1 б.) Верные ответы: 2;

7) (1 б.) Верные ответы: 1;

8) (1 б.) Верные ответы: 3;

9) (1 б.) Верные ответы: 3;

10) (1 б.) Верные ответы: 3;

11) (1 б.) Верные ответы: 3;

12) (1 б.) Верные ответы: 2;

13) (1 б.) Верные ответы: 2;

13) (1 б.) Верные ответы: 2;

15) (1 б.) Верные ответы: 2;

16) (1 б.) Верные ответы: 2;

17) (1 б.) Верные ответы: 4;

18) (1 б.) Верные ответы: 4;

19) (1 б.) Верные ответы: 2;

20) (1 б.) Верные ответы: 1;

Конец

Техническая химия 2-й рубежный контроль

Задание #1

Вопрос:

Температура воспламенения топлива это

Выберите один из 4 вариантов ответа:

1) температура, при которой топливо воспламеняется без воздействия постороннего источника тепла

2) максимальная температура, при которой в топливе появляется фазовая неоднородность

3) температура, при которой топливо воспламеняется, и горит, не менее 5 сек. в случае поднесения к нему открытого пламени

4) температура, при которой пары топлива, нагреваемые в строго определенных условиях, образуют с окружающим воздухом смесь, вспыхивающую при поднесении пламени

Задание #2

Вопрос:

Укажите степень окисления характерную для Ферума (железа):

Выберите один из 4 вариантов ответа:

Распространённые окислители и их продукты

Окислитель Полуреакции Продукт Стандартный потенциал, В
O2 кислород O 2 0 + 4 e − → 2 O 2 − {\displaystyle {\mbox{O}}_{2}^{0}+4{\mbox{e}}^{-}\rightarrow 2{\mbox{O}}^{2-}} Разные, включая оксиды, H2O и CO2 +1,229 (в кислой среде)

+0,401 (в щелочной среде)

O3 озон 2 O 3 0 + 2 e − → 2 O 2 0 {\displaystyle 2{\mbox{O}}_{3}^{0}+2{\mbox{e}}^{-}\rightarrow 2{\mbox{O}}_{2}^{0}} Разные, включая кетоны и альдегиды +2,07 (в кислой среде)
Пероксиды 2 O − + 2 e − → 2 O 2 − {\displaystyle 2{\mbox{O}}^{-}+2{\mbox{e}}^{-}\rightarrow 2{\mbox{O}}^{2-}} Разные, включая оксиды, окисляет сульфиды металлов до сульфатов H2O
Hal2 галогены Hal 2 0 + 2 e − → 2 Hal − {\displaystyle {\mbox{Hal}}_{2}^{0}+2{\mbox{e}}^{-}\rightarrow 2{\mbox{Hal}}^{-}} Hal−; окисляет металлы, P, C, S, Si до галогенидов F2: +2,87

Cl2: +1,36
Br2: +1,04
I2: +0,536

ClO− гипохлориты Cl−
ClO3− хлораты Cl−
HNO3 азотная кислота с активными металлами, разбавленная

N 5 + + 8 e − → N 3 − {\displaystyle {\mbox{N}}^{5+}+8{\mbox{e}}^{-}\rightarrow {\mbox{N}}^{3-}}

с активными металлами, концентрированная

N 5 + + 3 e − → N 2 + {\displaystyle {\mbox{N}}^{5+}+3{\mbox{e}}^{-}\rightarrow {\mbox{N}}^{2+}}

с тяжёлыми металлами, разбавленная

N 5 + + 3 e − → N 2 + {\displaystyle {\mbox{N}}^{5+}+3{\mbox{e}}^{-}\rightarrow {\mbox{N}}^{2+}}

c тяжёлыми металлами, концентрированная

N 5 + + e − → N 4 + {\displaystyle {\mbox{N}}^{5+}+{\mbox{e}}^{-}\rightarrow {\mbox{N}}^{4+}}

NH3, NH4+

NO

NO

H2SO4, конц. серная кислота c неметаллами и тяжёлыми металлами

S 6 + + 2 e − → S 4 + {\displaystyle {\mbox{S}}^{6+}+2{\mbox{e}}^{-}\rightarrow {\mbox{S}}^{4+}}

с активными металлами

S 6 + + 6 e − → S 0 ↓ {\displaystyle {\mbox{S}}^{6+}+6{\mbox{e}}^{-}\rightarrow {\mbox{S}}^{0}\downarrow }

S 6 + + 8 e − → S 2 − {\displaystyle {\mbox{S}}^{6+}+8{\mbox{e}}^{-}\rightarrow {\mbox{S}}^{2-}}

SO2; окисляет металлы до сульфатов с выделением сернистого газа или серы

H2S

Шестивалентный хром Cr 6 + + 6 e − → 2 Cr 3 + {\displaystyle {\mbox{Cr}}^{6+}+6{\mbox{e}}^{-}\rightarrow 2{\mbox{Cr}}^{3+}} Cr3+ +1,33
MnO2 оксид марганца(IV) Mn 4 + + 2 e − → Mn 2 + {\displaystyle {\mbox{Mn}}^{4+}+2{\mbox{e}}^{-}\rightarrow {\mbox{Mn}}^{2+}} Mn2+ +1,23
MnO4− перманганаты кислая среда

Mn 7 + + 5 e − → Mn 2 + {\displaystyle {\mbox{Mn}}^{7+}+5{\mbox{e}}^{-}\rightarrow {\mbox{Mn}}^{2+}}

нейтральная среда

Mn 7 + + 3 e − → Mn 4 + {\displaystyle {\mbox{Mn}}^{7+}+3{\mbox{e}}^{-}\rightarrow {\mbox{Mn}}^{4+}}

сильнощелочная среда

Mn 7 + + e − → Mn 6 + {\displaystyle {\mbox{Mn}}^{7+}+{\mbox{e}}^{-}\rightarrow {\mbox{Mn}}^{6+}}

Mn2+

MnO2

MnO42−

+1,51

+1,695

+0,564

Катионы металлов и H+ Me 2 + + 2 e − → Me 0 ↓ {\displaystyle {\mbox{Me}}^{2+}+2{\mbox{e}}^{-}\rightarrow {\mbox{Me}}^{0}\downarrow }

2 H + + 2 e − → H 2 0 {\displaystyle 2{\mbox{H}}^{+}+2{\mbox{e}}^{-}\rightarrow {\mbox{H}}_{2}^{0}\uparrow }

Me0 См. Электрохимический ряд активности металлов

Сильные окислители

Сильными окислительными свойствами обладает «царская водка» — смесь одного объёма азотной кислоты и трёх объёмов соляной кислоты.

HNO3 + 3HCl ↔ NOCl + 2Cl + 2H2O

Образующийся в нём хлористый нитрозил распадается на атомарный хлор и монооксид азота:

NOCl=NO + Cl

Царская водка является сильным окислителем благодаря атомарному хлору, который образуется в растворе. Царская водка окисляет даже благородные металлы — золото и платину.

Селеновая кислота — одна из немногих неорганических кислот, в концентрированном виде способная окислять золото. Более сильный окислитель даже в умеренно разбавленном растворе, чем серная кислота. Способна к окислению соляной кислоты по уравнению:

H 2 S e O 4 + 2 H C l → H 2 S e O 3 + C l 2 + H 2 O {\displaystyle {\mathsf {H_{2}SeO_{4}+2HCl\rightarrow H_{2}SeO_{3}+Cl_{2}+H_{2}O}}}

При этом продуктами реакции являются селенистая кислота, свободный хлор и вода. В то же время концентрированная серная кислота не способна окислять HCl.

Ещё один сильный окислитель — перманганат калия. Он способен окислять органические вещества и даже разрывать углеродные цепи:

С6H5-CH2-CH3 + → C6H5COOH + … C6H6 + → HOOC-(CH2)4-COOH

Сила окислителя при реакции в разбавленном водном растворе может быть выражена стандартным электродным потенциалом: чем выше потенциал, тем сильнее окислитель.

К сильным окислителям относятся также оксид меди(III), озонид цезия, надпероксид цезия, все фториды ксенона.

Окислительно-восстановительные реакции. Окислитель и восстановитель

Окислительно-восстановительными называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.

Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления.

Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.

Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции. (Легко запомнить: окислитель — грабитель.)

Восстановителем называют реагент, который отдаёт электроны в ходе окислительно-восстановительной реакции.

Окислительно-восстановительные реакции делят на реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Для составления окислительно-восстановительных реакций используют метод электронного баланса.

Составление уравнения окислительно-восстановительной реакции осуществляют в несколько стадий.

  1. Записывают схему уравнения с указанием в левой и правой частях степеней окисления атомов элементов, участвующих в процессах окисления и восстановления.
  2. Определяют число электронов, приобретаемых или отдаваемых атомами или ионами.
  3. Уравнивают число присоединённых и отданных электронов введением множителей, исходя из наименьшего кратного для коэффициентов в процессах окисления и восстановления.
  4. Найденные коэффициенты (их называют основными) подставляют в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Пример 1. Реакция алюминия с серой. Записываем схему реакции и указываем изменение степеней окисления:

Атом серы присоединяет два электрона, изменяя свою степень окисления от 0 до –2. Он является окислителем. Атом алюминия отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 2. Окисление фосфора хлором. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления хлора изменяется от 0 до –1, при этом молекула хлора присоединяет два электрона. Хлор является окислителем.

Атом фосфора отдаёт пять электронов, изменяя свою степень окисления от 0 до +5. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Электронное уравнение для хлора записывают именно так, поскольку окислителем является молекула хлора, состоящая из двух атомов, и каждый из этих атомов изменяет свою степень окисления от 0 до –1. Коэффициент 5 относится к молекуле хлора в левой части уравнения, а количество атомов хлора в правой части уравнения 5 × 2 = 10.

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 3. Восстановление оксида железа (II, III) алюминием. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления железа изменяется от +8/3 до 0, при этом три иона железа (поскольку в исходном оксиде их содержится именно три) присоединяют восемь электронов (3 × 8/3 = 8). Железо является окислителем.

Алюминий отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединенных и отданных электронов:

Электронное уравнение для алюминия записывают именно так, поскольку в состав оксида алюминия входят два атома алюминия. Таким образом, в левой части уравнения основной коэффициент перед оксидом железа (II, III) будет равен 3, а перед алюминием 4 × 2 = 8.

Количество атомов железа в правой части уравнения реакции составит 3 × 3 = 9. Количество молекул оксида алюминия будет равно 8/2 = 4. Окончательно получаем:

Проверяем баланс по кислороду. В левой части уравнения 3 × 4 = 12. В правой части уравнения 4 × 3 = 12. Таким образом, число атомов каждого элемента в отдельности в левой и в правой части химического уравнения равны между собой, и реакция уравнена правильно.

Этот пример наглядно показывает, что дробная степень окисления хотя и не имеет физического смысла, но позволяет правильно уравнять окислительно-восстановительную реакцию.

Очень часто окислительно-восстановительные реакции проходят в растворах в нейтральной, кислой или щелочной среде. В этом случае химические элементы, входящие в состав вещества, образующего среду реакции, свою степень окисления не меняют.

Пример 4. Окисление йодида натрия перманганатом калия в среде серной кислоты. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Атом марганца принимает пять электронов, изменяя свою степень окисления от +7 до +2. Перманганат калия является окислителем.

Два йодид-иона отдают два электрона, образуя молекулу I20. Йодид натрия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Найденные коэффициенты подставим в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Серная кислота является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет, но сульфат-анион связывает выделяющиеся в результате реакции катионы калия, натрия и марганца. Подсчитаем число сульфат-ионов в правой части. Оно равно 2 + 1 + 5 = 8. Следовательно, перед серной кислотой следует поставить коэффициент 8. Число атомов водорода в левой части уравнения равно 8 × 2 = 16. Отсюда вычисляем коэффициент для воды: 16/2 = 8.

Таким образом, уравнение реакции будет иметь вид:

Правильность баланса проверяем по кислороду. В левой части его 2 × 4 = 8 (перманганат калия); в правой — 8 × 1 = 8 (вода). Следовательно, уравнение составлено правильно.

Пример 5. Окисление сульфида калия манганатом калия в водной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Ион марганца принимает два электрона, изменяя свою степень окисления от +6 до +4. Манганат калия является окислителем.

Сульфид-ион отдаёт два электрона, образуя молекулу S0. Сульфид калия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Основные коэффициенты в уравнении реакции равны единице:

Вода является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Гидроксид-ионы связывают выделяющиеся в результате реакции катионы калия. Таких катионов четыре (2 × 2), число атомов водорода также 4 (4 × 1), поэтому перед молекулой воды ставим коэффициент два (4/2 = 2):

Пример 6. Окисление аммиака хлоратом калия в щелочной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Хлор принимает шесть электронов, изменяя свою степень окисления от +5 до –1. Хлорат калия является окислителем.

Азот отдаёт восемь электронов, изменяя свою степень окисления от –3 до +5. Аммиак является восстановителем.

Составляем уравнение электронного баланса, уравниваем число присоединённых и отданных электронов введением множителей, сокращаем кратные коэффициенты:

Проставляем найденные основные коэффициенты в уравнение реакции:

Гидроксид калия является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Катионы калия связывают выделяющиеся в результате реакции нитрат-ионы. Таких анионов три. Следовательно, перед гидроксидом калия ставим коэффициент три:

Число атомов водорода в левой части уравнения равно девяти в аммиаке (3 × 3) = 9 и трём в гидроксиде калия (3 × 1), а их общее число 9 + 3 = 12. Следовательно, перед водой ставим коэффициент (12/2) = 6. Окончательно уравнение реакции будет иметь вид:

Убеждаемся ещё раз в правильности расстановки коэффициентов, сравнивая число атомов кислорода в левой и правой его частях. Оно равно 15.

Довольно часто одно и то же вещество одновременно является окислителем и создаёт среду реакции. Такие реакции характерны для концентрированной серной кислоты и азотной кислоты в любой концентрации. Кроме того, в подобные реакции, но в качестве восстановителя, вступают галогенводородные кислоты с сильными окислителями.

Пример 7. Окисление магния разбавленной азотной кислотой. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления азота изменяется от +5 до +1, при этом два атома азота присоединяют восемь электронов. Азотная кислота является окислителем.

Магний отдаёт два электрона, изменяя свою степень окисления от 0 до +2. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 4 × 2 = 8 нитрат-ионов, не изменивших свою степень окисления. Очевидно, что для этого в правую часть уравнения реакции следует добавить ещё 8 молекул HNO3. Тогда общее количество молекул азотной кислоты в правой части уравнения составит 2 + 8 = 10.

В этих молекулах содержатся 10 × 1 = 10 атомов водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Следовательно, перед молекулой воды следует подставить коэффициент 10/2 = 5, и уравнение окончательно будет иметь вид:

Окончательно проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части 10 × 3 = 30. В правой части (2 × 3) × 4 = 24 в нитрате магния, 1 в оксиде азота (I) и 5 × 1 = 5 в молекуле воды. Итого 24 + 1 + 5 = 30. Таким образом, реакция полностью уравнена.

Пример 8. Взаимодействие соляной кислоты с оксидом марганца (IV). Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления марганца изменяется от +4 до +2, при этом марганец присоединяет два электрона. Оксид марганца (IV) является окислителем.

Два хлорид-иона отдают два электрона, образуя молекулу Cl20, хлористый водород является восстановителем.

Составляем электронное уравнение и уравниваем число присоединённых и отданных электронов, сокращаем кратные коэффициенты:

При этом коэффициент 1 изначально относится к двум хлорид-ионам и к одной молекуле Cl2. Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 1 × 2 = 2 хлорид-иона, не изменивших свою степень окисления. Эти хлорид-ионы в окислительно-восстановительной реакции не участвовали. Очевидно, что для этого в правую часть уравнения реакции следует добавить 2 молекулы HCl. Тогда общее количество молекул HCl в правой части уравнения составит 2 + 2 = 4. В этих молекулах будет содержаться 4 × 1 = 4 атома водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Тогда перед молекулой воды следует подставить коэффициент 4/2 = 2, и уравнение в окончательном виде будет иметь вид:

Проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части оно составляет 1 × 2 = 2 в оксиде марганца (IV), а в правой части 2 × 1 = 2 в молекуле воды. Таким образом, реакция полностью уравнена.

В качестве окислителя могут выступать нейтральные атомы и молекулы, положительно заряженные ионы металлов, сложные ионы и молекулы, содержащие атомы металлов и неметаллов в состоянии положительной степени окисления и др.

Ниже приведены сведения о некоторых наиболее распространенных окислителях, имеющих важное практическое значение.

Кислород. Сильный окислитель, окислительная способность значительно возрастает при нагревании. Кислород взаимодействует непосредственно с большинством простых веществ, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, с образованием оксидов:

Взаимодействие натрия с кислородом приводит к пероксиду натрия:

Более активные щелочные металлы (K, Rb, Cs) при взаимодействии с кислородом дают надпероксиды типа ЭО2:

В своих соединениях кислород, как правило, проявляет степень окисления –2. Применяется кислород в химической промышленности, в различных производственных процессах в металлургической промышленности, для получения высоких температур. С участием кислорода идут многочисленные чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие живые организмы, называемые анаэробными, могут обходиться без кислорода.

Реакции, иллюстрирующие окислительные свойства кислорода при его взаимодействии с различными неорганическими веществами, приведены в уроке 14.

Озон. Обладает ещё большей по сравнению с кислородом окислительной способностью. Озон окисляет все металлы, за исключением золота, платины и некоторых других, при этом, как правило, образуются соответствующие высшие оксиды элементов, реже — пероксиды и озониды, например:

Озон окисляет оксиды элементов с промежуточной степенью окисления в высшие оксиды.

Перманганат калия. Является сильным окислителем, широко применяется в лабораторной практике. Характер восстановления перманганата калия зависит от среды, в которой протекает реакция. В кислой среде перманганат калия восстанавливается до солей Mn2+, в нейтральной или слабощелочной — до MnO2, а в сильнощелочной он переходит в манганат-ион MnO42–. Данные переходы описываются следующими уравнениями

Перманганат калия способен окислять сульфиды в сульфаты, нитриты в нитраты, бромиды и йодиды — до брома и йода, соляную кислоту до хлора и т. д.:

Хромат и бихромат калия. Эти соединения широко применяют в качестве окислителей в неорганических и органических синтезах. Взаимные переходы хромат- и бихромат-ионов очень легко протекают в растворах, что можно описать следующим уравнением обратимой реакции:

Соединения хрома (VI) — сильные окислители. В окислительно-восстановительных процессах они переходят в производные Cr (III). В нейтральной среде образуется гидроксид хрома (III), например:

В кислой среде образуются ионы Cr3+:

В щелочной — производные анионного комплекса 3–:

В качестве восстановителя могут выступать нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления, электрический ток на катоде и др.

Ниже приведены сведения о некоторых наиболее распространённых восстановителях, имеющих важное практическое значение.

Углерод. Углерод широко применяют в качестве восстановителя в неорганических синтезах. При этом в качестве продуктов окисления может образовываться углекислый газ, или оксид углерода (II). При восстановлении оксидов металлов могут образовываться свободные металлы, реже — карбиды металлов.

Восстановительные свойства углерод проявляет также в реакции получения водяного газа:

Полученную смесь водорода и оксида углерода (II) широко применяют для синтеза органических соединений.

Оксид углерода (II). Широко применяют в металлургии при восстановлении металлов из их оксидов, например:

Водород. Широко применяют в качестве восстановителя в неорганических синтезах (водородотермия) для получения чистого вольфрама, молибдена, галлия, германия и т. д.:

Тренировочные задания

Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнении реакции, схема которой:

1. Al + H2O + KNO3 + KOH → K + NH3.

2. KNO3 + Al → KAlO2 + Al2O3 + N2.

3. Na2O2 + H2SO4 + KMnO4 → O2 + MnSO4 + Na2SO4 + K2SO4 + H2O.

4. NaCl + H2SO4 + MnO2 → Cl2 + MnSO4 + Na2SO4 + H2O.

5. NaCl + H2SO4 + KMnO4 → Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O.

6. KNO2 + H2SO4 + MnO2 → MnSO4 + KNO + H2O.

7. KI + H2SO4 + KMnO4 → I2 + MnSO4 + K2SO4 + H2O.

8. KI + K2Cr2O7 + H2SO4 → I2 + Cr2(SO4)3 + K2SO4 + H2O.

9. C + K2Cr2O7 + H2SO4 → CO2 + Cr2(SO4)3 + K2SO4 + H2O.

10. PbO2 + HNO3 + KI → Pb(NO3)2 + I2 + KNO3 + H2O.

11. PbO2 + HNO3 + Mn(NO3)2 → Pb(NO3)2 + HMnO4 + H2O.

12. NaNO2 + KMnO4 + H2SO4 → NaNO3 + MnSO4 + K2SO4 + H2O.

13. KNO2 + KMnO4 + H2SO4 → KNO3 + MnSO4 + K2SO4 + H2O.

14. KNO2 + K2Cr2O7 + H2SO4 → KNO3 + Cr2(SO4)3 + K2SO4 + H2O.

15. KNO2 + KI + H2SO4 → NO + I2 + K2SO4 + H2O.

16. KNO2 + FeSO4 + H2SO4 → NO + Fe2(SO4)3 + K2SO4 + H2O.

17. Ca3(PO4)2 + C + SiO2 → CaSiO3 + P + CO.

18. Sb + HNO3 → Sb2O5 + NO2 + H2O.

19. H2O2 + H2SO4 + KMnO4 → MnSO4 + O2 + H2O + K2SO4.

20. S + HNO3 → H2SO4 + NO2 + H2O.

21. H2S + HNO3 → H2SO4 + NO2 + H2O.

22. H2S + KMnO4 → MnO2 + S + H2O + KOH.

23. H2S + K2Cr2O7 + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O.

24. KMnO4 + Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O.

25. KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH.

26. KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O.

27. K2Cr2O7 + K2SO3 + H2SO4 → Cr2(SO4)3 + K2SO4 + H2O.

28. H2SO4 + C → SO2 + CO2 + H2O.

29. H2SO4 + Zn → ZnSO4 + H2S + H2O.

30. H2SO4 + KBr → SO2 + Br2 + KHSO4 + H2O.

31. H2SO4 + KI → H2S + I2 + K2SO4 + H2O.

32. PbO2 + HCl → PbCl2 + Cl2 + H2O.

33. K2Cr2O7 + HCl → CrCl3 + Cl2 + KCl + H2O.

34. KMnO4 + HCl → MnCl2 + Cl2 + KCl + H2O.

35. KClO3 + HCl → KCl + Cl2 + H2O.

36. HClO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + HCl + H2O.

37. NaBrO3 + NaBr + H2SO4 → Br2 + Na2SO4 + H2O.

38. HNO3 + I2 → HIO3 + NO2 + H2O.

39. HNO3 + I2 → HIO3 + NO + H2O.

40. H2SO4 + HI → I2 + H2S + S + H2O.

41. Fe2(SO4)3 + HI → FeSO4 + I2 + H2SO4.

42. HIO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + I2 + H2O.

Примеры окислителей и восстановителей

Восстановители

Окислители

Металлы

Водород, углерод

Оксид углерода (II)

Сероводород

Оксид серы (IV)

Сернистая кислота и ее соли

Галогеноводороды

Катионы металлов в низших степенях

окисления:

Азотистая кислота

Аммиак

Гидразин

Катод при

электролизе

Na, Ca, Zn

H2 ; C

HCl; HBr; HI

SnCl2, FeCl2, MnSO4, Cr2(SO4)3

Галогены

Перманганаты

Манганаты

Оксид марганца (IV)

Дихроматы

Хроматы

Азотная кислота

Серная кислота

Оксид свинца(IV)

Пероксид водорода

Мононадсерная кислота Двунадсерная кислот Катионы металлов в высших степенях

окисления:

Хлорат калия

Анод при электролизе

F2; Cl2; I2; Br2 KMnO4

K2Cr2O7 K2CrO4

H2SO4конц. PbO2

Н2SO5

TlCl3, Au(CNS)3

Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями, и восстановителями в зависимости от партнера, с которым взаимодействуют, и от условий реакции. Так, типичный окислитель пероксид водорода при взаимодействии в кислой среде с перманганатом калия оказывается восстановителем:

5 Н2О2 + 2 КМnO4 + 3 H2SO4 = 2 MnSO4 + K2SO4 + 5 O2 + 8 H2O,

а типичный восстановитель сульфит натрия окисляет сульфиды щелочных металлов:

Na2SO3 + 2 Na2S+ 3 H2O = 3 S  + 6 NaOH.

Кроме того, восстановители, включающие атомы в низшей степени окисления, могут быть окислителями за счет другого элемента. Например, типичный восстановитель аммиак может окислять щелочные металлы за счет атомов водорода:

NH3 + Na = NaH2N + 1/2 H2.

Cоставление уравнений ОВР

Окислительно-восстановительные реакции описываются уравнениями реакций, которые отображают количества веществ, вступивших во взаимодействие и получившихся продуктов. Для составления уравнений ОВР используют или метод электронного баланса(метод схем), или электронно-ионного баланса (метод полуреакций).

Метод электронного баланса более универсален, так как позволяет устанавливать стехиометрические отношения в ОВР в любых гомо- и гетерогенных системах.

Метод электронного баланса ‑ метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем, равно числу электронов, получаемых окислителем.

Уравнение составляется в несколько стадий:

1. Записывают схему реакции:

KMnO4 + HCl → KCl + MnCl2 + Cl2­ + H2O.

2. Проставляют степени окисления над знаками элементов, изменяющих степень окисления:

KMn+7O4 + HCl-1 → KCl + Mn+2Cl2 + Cl20­ + H2O.

3.Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем:

Mn+7 + 5ē → Mn+2.

2Cl-1 — 2ē → Cl20.

4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления:

Mn+7 + 5ē → Mn+2

5 2

2Cl-1 – 2ē → Cl20

2 5

––––––––––––––––––––––––

2Mn+7 + 10Cl-1 → 2Mn+2 + 5Cl20.

5. Подбирают коэффициенты для остальных участников реакции:

2KMn+7O4 + 16HCl-1 → 2KCl + 2Mn+2Cl2 + 5Cl20 + 8H2O.

Для подбора коэффициентов уравнений реакций, протекающих в водных растворах, предпочтительнее метод полуреакций.

  • Во-первых, он позволяет опустить операции определения степени окисления элементов.

  • Во-вторых, в процессе его использования сразу получается сокращенное ионное уравнение окислительно-восстановительной реакции.

  • В третьих, по уравнению полуреакций удается установить влияние среды на характер процесса.

  • Кроме того, при составлении электронно-ионного баланса оперируют ионами, реально существующими в водном растворе, в отличие от метода электронного баланса, который имеет дело с гипотетическими частицами типа Mn+7 , Cr+6 .

Метод электронно-ионного баланса (метод полуреакций).

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. При составлении уравнений процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная). Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда).

То есть при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Рассмотрим для примера следующую реакцию:

Н2О2 + КMnO4+ Н2SO4→ MnSO4 + О2+ H2O + K2SO4.

При нахождении стехиометрических коэффициентов уравнения окислительно-восстановительного процесса нужно выполнить следующие операции.

1. Определить окислитель и восстановитель среди реагирующих веществ. В нашем примере окислитель ‑ КMnО4, восстановитель ‑ Н2О2 и продукты их взаимодействия Mn2+ и О2.

2. Выписать схемы полуреакций:

Н2О2 → О2 окисление;

MnO → Mn 2+. восстановление.

3. Уравнять схемы:

а) по элементу, меняющему степень окисления (в нашем примере этого не требуется);

б) по кислороду, добавляя его туда, где нужно в виде молекул воды, если реакция протекает в кислой среде, и в виде гидроксид-иона, если реакция протекает в щелочной среде:

Н2О2 → О2;

MnO → Mn 2+ + 4 Н2О;

в) по водороду, добавляя его в виде ионов водорода, если реакция протекает в кислой среде, и в виде молекул воды, если реакция протекает в щелочной среде если:

Н2О2 → О2+ 2 Н+;

MnO+ 8 Н+ → Mn2+ + 4 H2O;

г) по суммарному заряду ионов, добавляя или отнимая нужное число электронов:

Н2О2 — 2ē → О2 + 2 Н+;

MnO4- + 8 Н+ + 5 ē →Mn2+ + 4H2O.

4. Учитывая закон электронейтральности, уравнять число отданных и принятых электронов и суммировать отдельно левые и правые части полуреакций:

Н2О2 — 2ē → О2+ 2 Н+ | 2| 5

MnO+ 8 Н+ + 5 ē →Mn 2+ + 4 H2O | 5| 2

5 Н2О2 + 2 MnO+ 16 Н+ = 5 О2+ 10 Н+ + 2 Mn 2+ +8 H2O.

Сокращая, получим уравнение данного редокс-процесса в ионном виде:

5 Н2О2 + 2 MnO+ 6 Н+ = 5 О2+ 2 Mn 2+ +8 H2O.

5. Перейти к молекулярному виду уравнения, добавляя катионы и анионы, остающиеся в результате реакции без изменения, то есть ионы-солеобразователи (в нашем примере ионы К+ и SO42-):

5 Н2О2 + 2 КMnO4+ 3 Н2SO4= 5 О2+ 8 H2O + K2SO4.

Рассмотрим еще один пример ‑ процесс окисления пирита концентрированной азотной кислотой.

1. Определим окислитель и восстановитель среди реагирующих веществ. В нашем примере окислитель – HNO3, восстановитель ‑ FeS2. Определим продукты реакции. Азотная кислота HNO3 является сильным окислителем, поэтому сера будет окисляться до максимальной степени окисления S6+, а железо ‑ до Fe3+, при этом HNO3 может восстанавливаться до NO:

FeS2 +HNO3 → Fe(NO3)3 + H2SO4 + NO.

2. Выпишем схемы полуреакций

FeS2 → Fe3+ +SОокисление;

NO→ NO восстановление.

3. Уравниваем схемы:

FeS2 + 8H2O — 15ē → Fe3+ + 2SО + 16H+;

NO+4H+ +3 ē → NO + 2H2O .

4. Учитывая закон электронейтральности, уравняем число отданных и принятых электронов и суммируем отдельно левые и правые части полуреакций:

FeS2 + 8H2O — 15ē → Fe3+ + 2SО+ 16H+ | 15 | 1

NO+ 4H+ +3 ē → NO + 2H2O | 3 | 5

FeS2 + 8H2O +5NO+ 20H+=Fe3++2SО+16H++ 5NO + 10H2O.

5. Сокращая, получим уравнение в ионном виде:

FeS2 +5NO+ 4H+ = Fe3+ + 2SО + 5NO + 2H2O.

6. Напишем уравнение в молекулярном виде, учитывая, что часть нитрат-ионов не восстановилась, а участвовала в обменной реакции, и часть ионов H+ присутствует в продуктах реакции (H2SO4):

Обратите внимание, что для определения количества отданных и принятых электронов вам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и автоматически определили, что Н2О находится в правой части уравнения. Несомненно, что этот метод гораздо больше соответствует химическому смыслу, чем стандартный метод электронного баланса.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *