Периметр треугольника
Содержание
- Совет 1: Как обнаружить стороны, если вестим периметр
- Совет 3: Как обнаружить стороны прямоугольника
- Совет 4: Как обнаружить периметр равностороннего треугольника
- Совет 5: Как обнаружить площадь и периметр квадрата
- Треугольник, у которого есть угол 90°
- Сумма сторон произвольного треугольника, у которого длины двух сторон неизвестны
Совет 1: Как обнаружить стороны, если вестим периметр
Периметром плоской фигуры называют сумму длин всех ее сторон. Но обнаружить стороны фигуры, зная только периметр – не неизменно выполнимая задача. Зачастую требуются добавочные данные.
Инструкция
1. Для квадрата либо ромба задача обнаружить стороны из периметра решается дюже примитивно. Вестимо, что у этих 2-х фигур по 4 стороны и все они равны между собой, следственно периметр p квадрата и ромба равен 4a, где a – сторона квадрата либо ромба. Тогда длина стороны равна одной четвертой периметра: a = p/4.
2. Легко разрешима эта задача и для равностороннего треугольника. У него три идентичных по длине стороны , следственно периметр p равностороннего треугольника равен 3a. Тогда сторона равностороннего треугольника a = p/3.
3. Для остальных фигур потребуются добавочные данные. Скажем, дозволено обнаружить стороны прямоугольника, зная его периметр и площадь. Представим, что длина 2-х противолежащих сторон прямоугольника равна a, а длина 2-х других сторон – b. Тогда периметр p прямоугольника равен 2(a+b), а площадь s равна ab. Получим систему уравнений с двумя неведомыми:p = 2(a+b)s = ab.Выразим из первого уравнения а: а = p/2 – b. Подставим во второе уравнение и обнаружим b: s = pb/2 – b². Дискриминант этого уравнения D = p²/4 – 4s. Тогда b = (p/2±D^1/2)/2. Отбросьте тот корень, тот, что будет поменьше нуля, и подставьте в выражение для стороны a.
Совет 3: Как обнаружить стороны прямоугольника
Частный случай параллелограмма – прямоугольник – знаменит только в геометрии Евклида. У прямоугольника равны все углы, и всякий из них по отдельности составляет 90 градусов. Исходя из частных свойств прямоугольника , а также из свойств параллелограмма о параллельности противолежащих сторон дозволено обнаружить стороны фигуры по заданным диагоналям и углу от их пересечения. Вычисление сторон прямоугольника базируется на дополнительных построениях и использовании свойств получаемых фигур.
1. Постройте прямоугольник EFGH. Запишите знаменитые данные: диагональ прямоугольника EG и угол α, полученный от пересечения 2-х равных диагоналей FH и EG. Постройте на рисунке диагонали и подметьте между ними угол α.
2. Буквой А подметьте точку пересечения диагоналей. Разглядите образованный построениями треугольник EFА. Согласно свойству прямоугольника его диагонали равны и делятся напополам точкой пересечения А. Вычислите значения FА и EА. Потому что треугольник EFА является равнобедренным и его стороны EА и FА равны между собой и соответственно равны половине диагонали EG.
3. Дальше вычислите первую сторону EF прямоугольника . Данная сторона является третьей неведомой стороной рассматриваемого треугольника EFА. Согласно теореме косинусов по соответствующей формуле обнаружьте сторону EF. Для этого подставьте в формулу косинусов полученные ранее значения сторон FА равна EА и косинус знаменитого угла между ними α. Вычислите и запишите полученное значение EF.
4. Обнаружьте вторую сторону прямоугольника FG. Для этого разглядите иной треугольник EFG. Он является прямоугольным, где знамениты гипотенуза EG и катет EF. Согласно теореме Пифагора обнаружьте 2-й катет FG по соответствующей формуле.
5. В соответствии со свойствами прямоугольника его противолежащие ребра равны. Таким образом сторона GH равна обнаруженной стороне EF, а HЕ = FG. Запишите в результат все вычисленные стороны прямоугольника .
Совет 4: Как обнаружить периметр равностороннего треугольника
Равносторонний треугольник наравне с квадратом является, вероятно, самой примитивный и симметричной фигурой в планиметрии. Разумеется, все соотношения, объективные для обыкновенного треугольника, правильны также и для равностороннего. Впрочем для положительного треугольника все формулы становятся гораздо проще.
Вам понадобится
- калькулятор, линейка
1. Дабы обнаружить периметр равностороннего треугольника измерьте длину одной из его сторон и умножьте итог измерения на три. В виде формулы это правило дозволено записать дальнейшим образом:Прт = Дс * 3,где:Прт – периметр равностороннего треугольника,Дс – длина всякий из его сторон.Периметр треугольника получится в тех же единицах измерения, что и длина его стороны.
2. Пример.Длина стороны равностороннего треугольника равна 10 мм. Требуется определить его периметр.Решение.Прт = 10 * 3 = 30 (мм)
3. Потому что равносторонний треугольник владеет высокой степенью симметрии, то для вычисления его периметра довольно одного из параметров. Скажем, площади, высоты, радиуса вписанной либо описанной окружности.
4. Если вестим радиус вписанной окружности равностороннего треугольника, то для вычисления его периметра воспользуйтесь дальнейшей формулой:Прт = 6 * ?3 * r, где: r – радиус вписанной окружности.Это правило следует из того, что радиус вписанной окружности равностороннего треугольника выражается через длину его стороны дальнейшим соотношением:r = ?3/6 * Дс.
5. Дабы вычислить периметр положительного треугольника через радиус описанной окружности, примените формулу:Прт = 3 * ?3 * R,где: R – радиус описанной окружности.Данная формула легко выводится из того факта, что радиус описанной окружности верного треугольника выражается через длину его стороны дальнейшим соотношением: R = ?3/3 * Дс.
6. Для вычисления периметра равностороннего треугольника через вестимую площадь воспользуйтесь дальнейшим соотношением:Sрт = Дст? * ?3 / 4,где: Sрт – площадь равностороннего треугольника.Отсель дозволено вывести: Дст? = 4 * Sрт / ?3, следственно: Дст = 2 * ?(Sрт / ?3).Подставляя это соотношение в формулу периметра через длину стороны равностороннего треугольника, получаем:Прт = 3 * Дст = 3 * 2 * ?(Sрт / ?3) = 6 * ?Sст / ?(?3) = 6?Sст / 3^?.
Видео по теме
Совет 5: Как обнаружить площадь и периметр квадрата
Квадрат представляет собой геометрическую фигуру, состоящую из четырех сторон идентичной длины и четырех прямых углов, всякий из которых равен 90°. Определение площади либо периметра четырехугольника, причем всякого, требуется не только при решении задач по геометрии, но и в повседневной жизни. Эти знания могут стать пригодными, скажем, во время ремонта при расчете необходимого числа материалов – покрытий для пола, стен либо потолка, а также для разбивки газонов и грядок и т.д.
1. Для определения площади квадрата умножьте величину длины на величину ширины. Потому что в квадрате длина и ширина идентичны, то значение одной стороны довольно построить в квадрат. Таким образом, площадь квадрата равна длине его стороны, возведенной в квадрат. Единицей измерения площади могут быть квадратные миллиметры, сантиметры, дециметры, метры, километры.Дабы определить площадь квадрата, дозволено воспользоваться формулойS = aa, где S – площадь квадрата,а – сторона квадрата.
2. Пример № 1. Комната имеет форму квадрата. Сколько ламината (в кв.м) понадобится для того, дабы всецело покрыть пол, если длина одной стороны комнаты составляет 5 метров.Запишите формулу: S = aa. Подставьте в нее указанные в условии данные.Потому что а = 5 м, следственно, площадь будет равнаS (комнаты) = 5х5= 25 кв.м, значит, и S (ламината) = 25 кв.м.
3. Периметр представляет собой всеобщую длину границы фигуры. В квадрате периметр – это длина всех четырех, причем идентичных, сторон. То есть, периметр квадрата представляет собой сумму всех его четырех сторон. Дабы вычислить периметр квадрата, довольно знать длину одной его стороны. Измеряется периметр в миллиметрах, сантиметрах, дециметрах, метрах, километрах.Для определения периметра имеется формула:P = a + а + а + а илиP = 4a, гдеР – периметр,а – длина стороны.
4. Пример № 2. Для отделочных работ помещения в форме квадрата требуются потолочные плинтуса. Вычислите всеобщую длину (периметр) плинтусов, если величина одной стороны комнаты равна 6 метров. Запишите формулу P = 4a.Подставьте в нее указанные в условии данные:Р (комнаты) = 4 х 6 = 24 метра.Следственно, длина потолочных плинтусов тоже будет равна 24 метров.
Видео по теме
Периметром треугольника, как в прочем и любой фигуры, называется сумма длин всех сторон. Довольно часто это значение помогает найти площадь или используется для расчета других параметров фигуры.
Формула периметра треугольника выглядит так:
P=a+b+c
Формула расчета периметра равнобедренного треугольника будет выглядеть так:
P=2a+b
Формула расчета периметра равностороннего треугольника:
P=3a
В общем, когда все стороны даны, найти периметр довольно просто. В остальных же ситуациях требуется найти размер недостающей стороны. В прямоугольном треугольнике можно найти третью сторону по теореме Пифагора.
Треугольник, у которого есть угол 90°
Его называют прямоугольным. Наличие прямого угла дает возможность находить неизвестные стороны, пользуясь определением тригонометрических функций и теоремой Пифагора. Самая длинная сторона называется гипотенуза и обозначается c. Имеются еще две стороны, a и b. Следуя теореме, носящей имя Пифагора, имеем c2 = a2 + b2. Катеты a = √ (c2 – b2) и b = √ (c2 – а2). Зная длину двух катетов a и b, вычисляем гипотенузу. Затем находим сумму сторон фигуры, сложив эти значения. Задание: Катеты прямоугольного треугольника имеют длину 8,3 сантиметра и 6,2 сантиметра. Периметр треугольника нужно вычислить. Решаем: Обозначим катеты a = 8,3 см, b = 6,2 см. За теоремой Пифагора гипотенуза c = √ (8,32 + 6,22) = √ (68,89 + 38,44) = √107,33 = 10,4 (см). P = 24,9 (см). Или P = 8,3 + 6,2 + √ (8,32 + 6,22) = 24,9 (см). Ответ: P = 24,9 см. Значения корней брали с точностью до десятых. Если нам известны значения гипотенузы и катета, то значение Р получим, вычислив Р=√ (c2 – b2) + b + c. Задача 2: Отрезок земельного участка, лежащий против угла в 90 градусов, 12 км, один из катетов – 8 км. За какое время можно обойти весь участок, если двигаться со скоростью 4 километра в час? Решение: если наибольший отрезок — 12 км, меньший b = 8 км, то длина всего пути составит P = 8 + 12 + √ (122 – 82) = 20 + √80 = 20 + 8,9 = 28,9 (км). Время найдем, разделив путь на скорость. 28,9:4 = 7,225 (ч). Ответ: можно обойти за 7,3 ч. Значение квадратных корней и ответа берем с точностью до десятых. Можно найти сумму сторон прямоугольного треугольника, если дана одна из сторон и значение одного из острых углов. Зная длину катета b и значение противолежащего ему угла β, найдем неизвестную сторону a = b/ tg β. Находим гипотенузу c = a: sinα. Периметр такой фигуры находим, сложив полученные значения. P = a + a/ sinα + a/ tg α, или P = a(1 / sin α+ 1+1 / tg α). Задание: В прямоугольном Δ АВС с прямым углом С катет ВС имеет длину 10 м, угол А – 29 градусов. Нужно найти сумму сторон Δ АВС. Решение: Обозначим известный катет ВС = a = 10 м, угол, лежащий напротив него, ∟А = α = 30°, тогда катет АС = b = 10: 0,58 = 17,2 (м), гипотенуза АВ = c = 10: 0,5 = 20 (м). Р = 10 + 17,2 + 20 = 47,2 (м). Или Р = 10 · (1 + 1,72 + 2) = 47,2 м. Имеем: P = 47,2 м. Значение тригонометрических функций берем с точностью до сотых, значение длины сторон и периметра округляем до десятых. Имея значение катета α и прилежащего угла β, узнаем, чему равен второй катет: b = a tg β. Гипотенуза в таком случае будет равна катету, разделенному на косинус угла β. Периметр узнаем по формуле P = a + a tg β + a: cos β = (tg β + 1+1: cos β)·a. Задание: Катет треугольника с углом 90 градусов 18 см, прилежащий угол – 40 градусов. Найти P. Решение: Обозначим известный катет ВС = 18 см, ∟β = 40°. Тогда неизвестный катет АС = b = 18 · 0,83 = 14,9 (см), гипотенуза АВ = c = 18: 0,77 = 23,4 (см). Сумма сторон фигуры равна Р = 56,3 (см). Или Р = (1 + 1,3+0,83)*18 = 56,3 см. Ответ: P = 56,3 см. Если известна длина гипотенузы c и какой-нибудь угол α, то катеты будут равны произведению гипотенузы для первого – на синус и для второго – на косинус этого угла. Периметр этой фигуры P = (sin α + 1+ cos α)*c. Задание: Гипотенуза прямоугольного треугольника АВ = 9,1 сантиметр, а угол 50 градусов. Найти сумму сторон данной фигуры. Решение: Обозначим гипотенузу: AB = c = 9,1 см, ∟A= α = 50°, тогда один из катетов BC имеет длину a = 9,1 · 0,77 = 7 (см), катет АС = b = 9,1 · 0,64 = 5,8 (см). Значит периметр этого многоугольника равен P = 9,1 + 7 + 5,8 = 21,9 (см). Или P = 9,1·(1 + 0,77 + 0,64) = 21,9 (см). Ответ: P = 21,9 сантиметров.
Сумма сторон произвольного треугольника, у которого длины двух сторон неизвестны
Когда знаем длину только одного отрезка и значение двух углов, можно узнать длину двух неизвестных сторон, пользуясь теоремой синусов: «в треугольнике стороны всегда пропорциональны значениям синусов противоположных углов». Откуда b = (a* sin β)/ sin a. Аналогично c = (a sin γ): sin a. Периметр в таком случае будет P = а + (а sin β)/ sin a + (a sin γ)/ sin a. Задание: Имеем Δ ABC. В нем длина стороны BC 8,5 мм, значение угла C – 47°, а угла B – 35 градусов. Найти сумму сторон данной фигуры. Решение: Обозначим длины сторон BC = a = 8,5 мм, AC = b, AB = c, ∟ A = α= 47°, ∟B = β = 35°, ∟ C = γ = 180° – (47° + 35°) = 180° – 82° = 98°. Из соотношений, полученных из теоремы синусов, находим катеты AC = b = (8,5·0,57): 0,73= 6,7 (мм), AB = c = (7 · 0,99): 0,73 = 9,5 (мм). Отсюда сумма сторон этого многоугольника равна P = 8,5 мм + 5,5 мм + 9,5 мм = 23,5 мм. Ответ: P = 23,5 мм. В случае, когда есть только длина одного отрезка и значения двух прилежащих углов, сначала вычисляем угол, противоположный известной стороне. Все углы этой фигуры в сумме имеют 180 градусов. Поэтому ∟A = 180° — (∟B + ∟C). Дальше находим неизвестные отрезки, используя теорему синусов. Задание: Имеем Δ ABC. Он имеет отрезок BC, равный 10 см. Значение угла B равно 48 градусов, угол C равен 56 градусов. Найти сумму сторон Δ ABC. Решение: Сначала найдем значение угла A, противолежащего стороне BC. ∟A = 180° – (48° + 56°) = 76°. Теперь с теоремой синусов вычислим длину стороны AC = 10·0,74: 0,97 = 7,6 (см). AB = BC* sin C/ sin A = 8,6. Периметр треугольника Р = 10 + 8,6 + 7,6 = 26,2 (см). Результат: P = 26,2 см.