Площадь многоугольника

Площадь многоугольника

Пример многоугольника

Данный калькулятор обсчитывает площадь многоугольника по введенным сторонами и диагоналям, разбивающим многоугольник на непересекающиеся треугольники.

Смотрим на картинку — площадь многоугольника ABCDE можно вычислить как сумму площадей треугольников ABD, BCD и ADE. Для этого, понятно, помимо длин сторон многоугольника, надо знать еще и длины диагоналей BD и AD, но это и все что нужно — площадь любого треугольника можно вычислить только по длинам его сторон, без измерения углов.

А это довольно удобно, например, при бытовом ремонте — длины-то всяко проще померять, чем углы.

Итак, измеряем длины сторон интересующего нас многоугольника, заносим их в таблицу, мысленно разбиваем многоугольник на треугольники, измеряем нужные диагонали, также заносим их в таблицу, после чего калькулятор рассчитывает площадь всей фигуры. Для проверки также выводятся площади обсчитанных им треугольников. В поле «Ошибка» выводится вершина, которую не удалось сопоставить ни одному треугольнику (если, например, введены еще не все диагонали).

По умолчанию в таблицу введены стороны и диагонали многоугольника на картинке, что легко исправить, нажав кнопку «Очистить таблицу».

Стороны и диагонали

Название стороны или диагонали

Для разделения полей можно использовать один из этих символов: Tab, «;» или «,» Пример: ? EFGHIJKLMNOPQRSTUVWXYZ ?;50.5

Точность вычисления

Знаков после запятой: 2

Площади неправильных фигур.

Площади неправильных плоских фигур можно приблизительно определить, используя планиметр, формулу трапеций, правило средних ординат, формулу Симпсона.

Подобные методы могут быть использованы, например, инженерами для оценки площадей индикаторных диаграмм паровых двигателей, землемерами для оценки площадей земельных участков, кораблестроителями для оценки горизонтальных или поперечных сечений кораблей.

Планиметр.

Это инструмент для непосредственного измерения малых площадей, очерченных неправильной кривой.

Формула трапеций.

Чтобы определить площадь PQRS на рис. выше , необходимо:

— Разделить PS на любое число равных интервалов шириной d каждый (чем больше количество интервалов, тем выше точность).

— Аккуратно измерить ординаты у1, у2, у3 и так далее.

-Площадь SPQRS = d

В общем, согласно формуле трапеций: Площадь = (ширина интервала).

Правило средних ординат.

Чтобы определить площадь ABCD на рис. выше, необходимо:

— Разделить основание AD на любое количество равных интервалов шириной d каждый (чем больше количество интервалов, тем выше точность).

— Восстановить перпендикуляр из середины каждого интервала (на рис. выше оказаны штриховыми линиями).

-Точно измерить ординаты у1, у2, у3 и так далее.

— Площадь SABCD = d(у1 +у2+у3+ у4+у5+у6)

В общем виде, правило средних ординат гласит: Площадь = (ширина интервала)*(сумма средних ординат).

Формула Симпсона .

Чтобы определить площадь PQRS на рис.выше, необходимо:

— Разделить основание PS на четное количество равных интервалов шириной d каждый (чем больше количество интервалов, тем выше точность).

— Точно измерить ординаты у1, у2, у3 и так далее.

— Площадь SPQRS = (d/3)*

В общем виде, формула Симпсона: Площадь = 1/3(ширина интервала).

Пример. Определение площади под кривой с помощью формулы трапеций, правила средних ординат, формулы Симпсона.

Машина стартует из состояния покоя, и ее скорость измеряется каждую секунду в течение 6 секунд:

Время t 0 1 2 3 4 5 6
Скорость v 0 3,0 6,0 9,15 13,5 18,5 25,0

Хотя мы понимаем что увеличение числа разбиений увеличивает точность, но для простоты решения возьмем количество разбиений, равное 7.

Определить расстояние, пройденное за 6 секунд (т.е. площадь под графиком):

а) по формуле трапеций, б) по правилу средних ординат, в)по формуле Симпсона.

а) Формула трапеций.

Время на графике делится на 6 интервалов шириной 1 с и измеряются ординаты. Итак, площадь S определяется формулой

S= 1=62,65 м

б) Правило средних ординат.

Время на графике делится на 6 интервалов шириной 1 с. На рис. пунктирной линией показаны средние ординаты. Измерена каждая средняя ордината. Итак, площадь S определяется формулой

S= 1(1,5 +4,5+7,75+11,75+16+21,5)=63 м

в) Формула Симпсона .

Время на графике делится на 6 интервалов шириной 1 с и измеряются ординаты. Итак, площадь S определяется формулой:

S= (1/3)*= 61,2 м.

Т.е. машина проехала в среднем 62,283 м.

(

из 5)

Онлайн калькулятор. Площадь прямоугольника

Используя этот онлайн калькулятор, вы сможете найти площадь прямоугольника.

Воспользовавшись онлайн калькулятором для вычисления площади прямоугольника, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения таких задач и закрепить пройденный материал.

Ввод данных в калькулятор для вычисления площади прямоугольника

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

N.B. В онлайн калькуляте можно использовать величины в одинаквых единицах измерения!

Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины и конвертером единиц площади.

Дополнительные возможности калькулятора вычисления площади прямоугольника

  • Между полями для ввода можно перемещаться нажимая клавиши «вправо» и «влево» на клавиатуре.

где S — площадь прямоугольника,

a — длина первой стороны,

b — длина второй стороны.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.

Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Площадь участка сложной формы

Подумалось, что остановить их можно только написав вот такой шуточный калькулятор. (Нажмите кнопку «Остановить» для определения площади понравившегося Вам четырехугольника с заданными Вами сторонами).

Длина стороны A

Длина стороны B

Длина стороны C

Длина стороны D

Площадь неправильного четырехугольника, зная только длины сторон, вычислить нельзя. Надеюсь, эта демонстрация поможет понять это всем, кто просил создать для этого калькулятор.

Зачем нужно знать площадь пола
Определение площади прямоугольного помещения
Расчет площади комнаты неправильной планировки
Узнаём площадь треугольного помещения
Как рассчитать площадь стен комнаты
Как рассчитать площадь стен комнаты
Пропорции между площадью пола и окон

Невозможно проводить ремонт напольной поверхности, не зная точную площадь пола в частном домовладении или квартире. Дело в том, что сегодня стоимость строительных материалов достаточно высокая, и каждый владелец недвижимости старается максимально сэкономить на их покупке. Поэтому информация, как рассчитать площадь пола, не будет лишней для того, кто предпочитает делать ремонт собственноручно.

Формулы площади

Площадь геометрической фигуры — часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади выражается числом заключающихся в него квадратных единиц.

Формулы площади треугольника

1-ая формула

S — площадь треугольника

a, b — длины 2-х сторон треугольника

С — угол между сторонами a и b

2-ая формула

S — площадь треугольника

a — длина стороны треугольника

h — длина высоты, опущенной на сторону a

3-ья формула

S — площадь треугольника

a, b, c — длины 3-х сторон треугольника

p — полупериметр треугольника

4-ая формула

S — площадь треугольника

r — радиус вписанной окружности

p — полупериметр треугольника

5-ая формула

S — площадь треугольника

a, b, c — длины 3-х сторон треугольника

R — радиус описанной окружности

См. также: Программа для расчета площади треугольника.

Формулы площади квадрата:

1) Площадь квадрата равна квадрату длины его стороны (a).

2) Площадь квадрата равна половине квадрата длины его диагонали (d).

S — площадь квадрата

a — длина стороны квадрата

d — длина диагонали квадрата

См. также: Программа для расчета площади квадрата.

Формула площади прямоугольника:

1) Площадь прямоугольника равна произведению длин двух его смежных сторон (a, b).

S — площадь прямоугольника

a — длина 1-ой стороны прямоугольника

b — длина 2-ой стороны прямоугольника

См. также: Программа для расчета площади прямоугольника.

Формула площади параллелограмма:

1) Площадь параллелограмма равна произведению длины его основания на длину высоты (a, h).

S — площадь параллелограмма

a — длина основания

h — длина высоты

См. также: Программа для расчета площади параллелограмма.

Формула площади трапеции:

1) Площадь трапеции равна произведению полусуммы ее оснований на высоту (a, b, h).

S — площадь трапеции

a — длина 1-ого основания

b — длина 2-ого основания

h — длина высоты трапеции

См.

Как находить площадь фигур на клетчатой бумаге:

Способ 1: (удобен для стандартных фигур: треугольника, трапеции и т.д.)

  1. Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади.
  2. Подставить найденные значения в уравнение площади.

Способ 2: (очень удобен для сложных фигур, но и для простых неплох)

  1. Достроить искомую фигуру до прямоугольника.
  2. Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника.
  3. Из площади прямоугольника вычесть сумму площадей всех лишних фигур.

Проиллюстрируем первый способ.

Пусть нужно найти площадь такой вот трапеции, построенной на листе в клетку

Просто считаем клеточки и видим, что в нашем случае , и . Подставляем в формулу:

Но бывает, что не так-то просто рассчитать, сколько клеток в нужном отрезке. Вот смотри, треугольник:

Вроде бы даже прямоугольный и , но чему тут равно , и чему равно ? Как узнать? Применим для полной ясности оба способа

I способ.

Найдем по теореме Пифагора из , а по теореме Пифагора из . Благо на листе в клетку легко посчитать длину катетов.

Итак:

Значит,

Теперь .

Подставляем в формулу:

II способ (скажу по секрету – этот способ лучше).

Нужно окружить нашу фигуру прямоугольником. Вот так:

Получился один (нужный) треугольник внутри и целых три ненужных треугольника снаружи. Но зато площади этих ненужных треугольников легко считаются на листе в клетку! Вот мы их посчитаем, а потом просто вычтем из целого прямоугольника.

Итак.

Почему же этот способ лучше? Потому что он работает и для самых хитрых фигур. Вот смотри, нужно посчитать площадь такой фигуры:

Окружаем ее прямоугольником и снова получаем одну нужную, но сложную площадь и много ненужных, но простых.

А теперь чтобы найти площадь просто находим площадь прямоугольника и вычитаем из него оставшуюся площадь фигур на клетчатой бумаге .

(обрати внимание, площадь НЕ прямоугольного треугольника, но все равно легко считается по основной формуле).

Значит, .

Вот и ответ: .

Ну как тебе этот способ? Старайся применять его всегда, и сможешь без труда найти площадь фигур на клетчатой бумаге!

Инструкция

  • Постройте окружность с заданным радиусом. Центр ее обозначьте как О. Чтобы получить полукруг, достаточно провести через эту точку отрезок до пересечения с окружностью. Этот отрезок является диаметром данной окружности и равен двум ее радиусам. Вспомните, что такое окружность и что такое круг. Окружность — это линия, все точки которой удалены от центра на одинаковое расстояние. Круг — часть плоскости, ограниченная этой линией.
  • Вспомните формулу площади круга.

    Она равна квадрату радиуса, умноженному на постоянный коэффициент π, равный 3,14. То есть площадь круга выражается формулой S=πR2, где S – площадь, а R — радиус окружности. Вычислите площадь полукруга. Она равна половине площади круга, то есть S1= πR2/2.

  • В случае, когда вам в условиях дана только длина окружности, найдите сначала радиус. Длина окружности вычисляется по формуле P=2πR. Соответственно, чтобы найти радиус, необходимо длину окружности разделить на удвоенный коэффициент. Получается формула R=P/2π.
  • Полукруг можно представить и как сектор. Сектором называется часть круга, которая ограничена его двумя радиусами и дугой. Площадь сектора равна площади круга, умноженной на отношение центрального угла к полному углу окружности. То есть, в данном случае она выражается формулой S=π*R2*n°/360°. Угол сектора известен, он составляет 180°. Подставив его значение, вы снова получите ту же самую формулу — S1= πR2/2.

© CompleteRepair.Ru

В школьном курсе геометрии ученики в основном считают площади правильных многоугольников. Между тем, для решения множества практических задач нередко приходится иметь дело с неправильными геометрическими фигурами. С этой проблемой человек сталкивается и при определении размеров дачного участка или придомовой территории, и при расчете количества ткани для шитья, и еще во многих случаях. Высчитать площадь неправильной фигуры можно несколькими способами.

Вам понадобится

— неправильная геометрическая фигура;
— измерительные инструменты;
— прозрачный пластик;
— линейка;
— угольник;
— шариковая ручка.

Инструкция

Рассмотрите геометрическую фигуру и определите, какие ее параметры вам известны. Это могут быть длины сторон или углы. В зависимости от заданных параметров и выберите способ определения площади. Например, разделите ее на несколько фигур, формулы вычисления площади которых вы знаете. Один из самых распространенных методов — провести диагонали из одного угла ко всем остальным вершинам. В этом случае вам нужно знать формулу вычисления площади произвольного треугольника. Но никто не запрещает разделить заданную фигуру и на другие многоугольники. Например, при расчете площади пола в комнате с нишей удобнее разделить неправильную фигуру на два прямоугольника или квадрата.

Для определения площади не слишком большой детали можно воспользуйтесь палеткой. Ее можно сделать самому. Отрежьте прямоугольный кусок любого прозрачного пластика. Разделите его на квадраты, площадь которых вам известна — например, 1х1 или 0,5х0,5 см. Линейка и угольник должны быть точными. Наложите палетку на деталь. Сосчитайте полные квадратики, затем — неполные. Количество неполных квадратов разделите на 2 и приплюсуйте результат к числу целых. Чем мельче деления на палетке — тем точнее будет результат. Аналогично можно посчитать и площадь участка. Роль палетки будет выполнять сетка из квадратов со стороной 1х1 м, начерченная на земле или отмеченная колышками с протянутыми между ними шнурами. Можно ограничиться и разметкой территории на полосы. .

С крупными площадями можно поступить и иначе. Возьмите максимально точный план участка или придомовой территории. Определите масштаб. Воспользуйтесь одним из предложенных способов. Затем полученное количество квадратных сантиметров переведите в нужный масштаб.

Как просто


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *